Beneficial effect of young oocytes for rabbit somatic cell nuclear transfer.

نویسندگان

  • Fuliang Du
  • Jie Xu
  • Jifeng Zhang
  • Shaorong Gao
  • Mark G Carter
  • Chingli He
  • Li-Ying Sung
  • Sanjeev Chaubal
  • Rafael A Fissore
  • X Cindy Tian
  • Xiangzhong Yang
  • Y Eugene Chen
چکیده

This study was designed to examine the effect of the age of rabbit oocytes on the developmental potential of cloned embryos. The metaphase II oocytes used for nuclear transfer (NT) were collected at 10, 12, 14, and 16 h post-hCG injection (hpi). The total number of oocytes collected per donor (21.4-23.7) at 12 to 16 hpi was similar, but significantly higher than that collected at 10 hpi (16.2). Additionally, a significant improvement in blastocyst development was achieved with embryos generated by electrically mediated cell fusion (56.0%), compared to those from nuclear injection (13.1 %) (Experiment 1). Markedly higher blastocyst development (45.8-54.5%) was also achieved with oocytes collected at 10-12 hpi than from those collected 14-16 hpi (8.3-14.3%) (Experiment 2). In Experiment 3, the blastocyst rates of NT embryos derived from oocytes harvested 12 hpi (39.2-42.8 %) were significantly higher than from those collected at 16 hpi (6.8-8.4 %) (p < 0.05), regardless of the donor cell age. Kinase activity assays showed variable changes of activity in rabbit oocytes over the period of 10-16 hpi; however, there was no correlation with preimplantational development (blastocyst rate vs. MPF, R = 0.326; blastocyst rate vs. MAPK, R = -0.131). Embryo transfer of NT embryos utilizing 12 hpi oocytes resulted in one full-term but stillborn, and one live cloned rabbit; thus, an efficiency of 1.7 % (n = 117) (Experiment 4). These results demonstrated that NT utilizing relatively young rabbit oocytes, harvested at 10-12 h after hCG injection, was beneficial for the development of NT embryos.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

I-8: Somatic Cell Nuclear Reprogramming byMouse Oocytes Endures Beyond ReproductiveDecline

Background: The mammalian oocyte has the unique feature of supporting fertilization and normal development while being able of reprogramming the nuclei of somatic cells towards pluripotency, and occasionally even totipotency. Whilst oocyte quality is known to decay with somatic ageing, it is not a given that different biological functions decay concurrently. In this study, we tested whether ooc...

متن کامل

Efficiency of Ovine Fibroblast or Cumulus Cells For Somatic Cell Nuclear Transfer in Sheep

Purpose: Despite remarkable progresses have been achieved in the field of somatic cell nuclear transfer (SCNT), there is little information regarding the effect of donor cell type on the efficiency mammalian somatic cell cloning in vitro. This study compared in vitro developmental competency of sheep enucleated oocytes reconstructed with either fibroblast or cumulus cells. Material and methods...

متن کامل

P-115: Melatonin Increases Developmental Rate of In Vitro Mouse Somatic Cell Nuclear

Background: The beneficial effect of supplementing culture medium with melatonin has been reported during in vitro embryo development of species such as mouse, bovine and porcine. However, the effect of melatonin on the mouse somatic cell nuclear transfer remained unknown. Materials and Methods: In this study, we assessed the effects of various concentrations of melatonin (10-6 to 10-12 M) on t...

متن کامل

O-3: Effect of Melatonin Treatment on Developmental Potential of Somatic Cell Nuclear- Transferred Mouse Oocytes In Vitro

Background Melatonin (N-acetyl-5- methoxytryptamine) is mainly synthesized and secreted in the pineal gland, ovary, testes, bone marrow, retina and lens in mammalian species. It is involved in the detoxification of ROS and protects embryos from oxidative damage. Melatonin acts as a potential free radical scavenger, including peroxyl radical and hydroxyl radical. In addition, it can stimulate th...

متن کامل

P-86: Production of Cloned Mice by Somaticm Cell Nuclear Transfer

Background: For several years, mammalian cloning by splitting an early embryo or nuclear transfer into oocytes method has been successfully performed. Cloning is now also possible using adult somatic cells. Although it has now been 15 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), the success rate for producing live offspring by cloning is lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cloning and stem cells

دوره 11 1  شماره 

صفحات  -

تاریخ انتشار 2009